The functional impairment of T cell-mediated immunity within the tumor microenvironment (TME) is a defining feature of many cancers. Checkpoint blockade therapy seeks to reinvigorate T cell responses by targeting inhibitory receptors such as PD-1, which are upregulated by dysfunctional TILs. However, the fundamental mechanisms underlying T cell dysfunction in the TME remain poorly understood, as are the mechanisms by which checkpoint blockade overcomes this dysfunction. Initial studies of dysfunctional CD8+ T cells in both human and mouse tumors suggested that they share features of T cell exhaustion, including co-inhibitory receptor upregulation and defects in cytokine production. However, more recent studies have suggested that TIL dysfunction is a unique state that is distinct from T cell exhaustion. Here we show that anti-PD-1 therapy acts on a specific subpopulation of CD8+ tumor-infiltrating lymphocytes (TILs) in melanoma mouse models as well as patients with melanoma. We find that dysfunctional CD8+ TILs possess canonical epigenetic and transcriptional features of T cell exhaustion, mirroring those seen in chronic viral infection. Similar to chronic viral infection, exhausted CD8+ TILs contain a subpopulation of "stem-like exhausted" T cells that have a distinct regulatory state. Stem-like exhausted TILs also have critical functional attributes that are not shared by the majority "terminally exhausted" TILs: they retain more polyfunctionality, persist following transfer into tumor-bearing mice, and differentiate to repopulate terminally exhausted TILs in the TME. As a result, stem-like exhausted CD8+ TILs are better able to control tumor growth than terminally exhausted cells. Stem-like exhausted, but not terminally exhausted, CD8+ TILs can respond to anti-PD-1 therapy without reversion of their exhausted epigenetic state. CD8+ T cells with a stem-like exhausted phenotype can be found in human melanoma samples and patients with a higher fraction of this subpopulation in their tumors have a significantly longer duration of response to combination checkpoint blockade therapy. Responsiveness to checkpoint blockade is therefore restricted to a subpopulation of exhausted TILs that retain specific functional properties which enable them to control tumors. Approaches to expand stem-like exhausted CD8+ T cells in the tumor microenvironment may be an important component of improving checkpoint blockade response.

Disclosures

Haining:Rheos Medicines: Consultancy; Iomx Therapeutics: Consultancy; Third Rock Ventures: Consultancy; Roche: Research Funding; Calico: Research Funding; Novartis: Research Funding; Tango Therapeutics: Consultancy, Equity Ownership.

Author notes

*

Asterisk with author names denotes non-ASH members.

Sign in via your Institution